Formaldehyde biodegradation and its effect on the denitrification process.

نویسندگان

  • M Eiroa
  • A Vilar
  • C Kennes
  • M C Veiga
چکیده

Simultaneous formaldehyde biodegradation and denitrification in batch assays and in a continuous lab-scale reactor were studied. In batch assays, initial biodegradation rates between 0.7 and 3.3 g CKH2O g VSS(-1) d(-1) were obtained at formaldehyde concentrations between 300 and 2150 mg l(-1). The denitrification process was affected by the presence of formaldehyde. The nitrite accumulation increased with the initial formaldehyde concentration. In the continuous reactor, removal efficiencies above 98.5% were obtained at formaldehyde loading rates between 0.37 and 2.96 kg COD m(-3) d(-1) (625-5000 mg CH2O l(-1)). Formaldehyde removal led to the appearance of methanol and formic acid in the medium. Denitrification process was almost complete (around 99.7%) at nitrogen loading rates up to 0.44 kg N-NO3- m(-3) d(-1). Nitrite occasionally appeared in the effluent at concentrations less than 2.9 mg l(-1). The composition of the biogas indicated that denitrification and methanogenesis occurred simultaneously in the same unit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation and effect of formaldehyde and phenol on the denitrification process.

Formaldehyde and phenol biodegradation during the denitrification process was studied at lab-scale, first in anoxic batch assays and then in a continuous anoxic reactor. The biodegradation of formaldehyde (260 mgl(-1)) as single carbon source and at phenol concentrations ranging from 30 to 580 mgl(-1) was investigated in batch assays, obtaining an initial biodegradation rate around 0.5g CH(2)Og...

متن کامل

Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor.

Simultaneous formaldehyde biodegradation, urea hydrolysis and denitrification in anoxic batch assays and in a continuous laboratory anoxic reactor were investigated. In batch assays, the initial formaldehyde biodegradation rate was around 0.7 g CH(2)Og VSS(-1)d(-1) and independent of the urea concentration (90- 370 mg N-NH(2)CONH(2)l(-1)). Urea was completely hydrolyzed to ammonium in the prese...

متن کامل

Formaldehyde biodegradation and its inhibitory effect on nitrification

The simultaneous removal of formaldehyde and ammonium in aerobic cultures and the inhibitory effect of formaldehyde on ammonium oxidation were investigated. The influence of a co-substrate, methanol, on formaldehyde biodegradation and on the nitrification process was also evaluated. Formaldehyde was completely removed at all concentrations tested (30–3890 mg dm−3) in assays with that compound a...

متن کامل

The effect of metronidazole on biological denitrification of Pesudomonas stutzeri in wastewater

Background : Pseudomonus stutzeri bactrerium is one of the most important and effective denitrifier bacteria in wastewater. With regard to the importance of effects of nitrate on water resources and human health and role of metronidazole inhibition, this study was done with the aim of survey of effect of metronidazole different concentrations on biological denitrification of Pesudomonas stutzer...

متن کامل

Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters.

The effect of some important operation parameters, as pH, pollutant load and composition of the nutrient media, on the biodegradation of a mixture of formaldehyde and methanol in a gas-phase biotrickling filter was studied. pH proved to affect the degradation of both compounds at moderately acidic values. Replacing ammonium with nitrate as nitrogen source in the liquid solution led to a slight ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental technology

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2007